Technique for preprocessing of digital mammogram

نویسندگان

  • Indra Kanta Maitra
  • Sanjay Nag
  • Samir Kumar Bandyopadhyay
چکیده

Digital mammogram has emerged as the most popular screening technique for early detection of breast cancer and other abnormalities in human breast tissue. It provides us opportunities to develop algorithms for computer aided detection (CAD). In this paper we have proposed three distinct steps. The initial step involves contrast enhancement by using the contrast limited adaptive histogram equalization (CLAHE) technique. Then define the rectangle to isolate the pectoral muscle from the region of interest (ROI) and finally suppress the pectoral muscle using our proposed modified seeded region growing (SRG) algorithm. The proposed algorithms were extensively applied on all the 322 mammogram images in MIAS database resulting in complete pectoral muscle suppression in most of the images. Our proposed algorithm is compared with other segmentation methods showing superior results in comparison.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

Automatic Identification and Elimination of Pectoral Muscle in Digital Mammograms

Computer aided detection/diagnosis aims at assisting radiologist in the analysis of digital mammograms. Digital mammogram has emerged as the most popular screening technique for early detection of breast cancer and other abnormalities in human breast tissue. The pectoral muscle represents a predominant density region in most mammograms and can affect/bias the results of image processing methods...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Digital Imaging in Mammography towards Detection and Analysis of Human Breast Cancer

Mammography is at present most popular and available method for early detection of breast cancer. The most common breast abnormalities that may indicate breast cancer are masses and calcifications. The challenge is to quickly and accurately overcome the development of breast cancer, which affects more and more women through the world. Masses appear in a mammogram as fine, granular clusters, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 107 2  شماره 

صفحات  -

تاریخ انتشار 2012